Two particles of mass m each are tied at the ends of a light string of length 2a. The whole system is kept on a frictionless horizontal surface with the string held tight so that each mass is at a distance 'a' from the centre P (as shown in the figure). Now, the mid-point of the string is pulled vertically upwards with a small but constant force F. As a result, the particles move towards each other on the surface. The magnitude of acceleration, when the separation between them becomes 2x, is

(A)
$$\frac{F}{2m} \frac{a}{\sqrt{a^2 - x^2}}$$
 (B) $\frac{F}{2m} \frac{x}{\sqrt{a^2 - x^2}}$

(C)
$$\frac{F}{2m}\frac{x}{a}$$
 (D) $\frac{F}{2m}\frac{\sqrt{a^2-x^2}}{x}$

$$2T \sin \theta = F$$

 $T \cos \theta = mA$

$$2 \tan \theta = \frac{F}{mA}$$

$$A = \frac{F}{2m} \left(\frac{x}{\sqrt{a^2 - x^2}} \right)$$